Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
2.
Nat Genet ; 55(9): 1440-1447, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537257

RESUMO

The incidence of keratinocyte cancer (basal cell and squamous cell carcinomas of the skin) is 17-fold lower in Singapore than the UK1-3, despite Singapore receiving 2-3 times more ultraviolet (UV) radiation4,5. Aging skin contains somatic mutant clones from which such cancers develop6,7. We hypothesized that differences in keratinocyte cancer incidence may be reflected in the normal skin mutational landscape. Here we show that, compared to Singapore, aging facial skin from populations in the UK has a fourfold greater mutational burden, a predominant UV mutational signature, increased copy number aberrations and increased mutant TP53 selection. These features are shared by keratinocyte cancers from high-incidence and low-incidence populations8-13. In Singaporean skin, most mutations result from cell-intrinsic processes; mutant NOTCH1 and NOTCH2 are more strongly selected than in the UK. Aging skin in a high-incidence country has multiple features convergent with cancer that are not found in a low-risk country. These differences may reflect germline variation in UV-protective genes.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas/genética , Queratinócitos , Raios Ultravioleta/efeitos adversos , Mutação
3.
Nat Genet ; 55(2): 232-245, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658434

RESUMO

NOTCH1 mutant clones occupy the majority of normal human esophagus by middle age but are comparatively rare in esophageal cancers, suggesting NOTCH1 mutations drive clonal expansion but impede carcinogenesis. Here we test this hypothesis. Sequencing NOTCH1 mutant clones in aging human esophagus reveals frequent biallelic mutations that block NOTCH1 signaling. In mouse esophagus, heterozygous Notch1 mutation confers a competitive advantage over wild-type cells, an effect enhanced by loss of the second allele. Widespread Notch1 loss alters transcription but has minimal effects on the epithelial structure and cell dynamics. In a carcinogenesis model, Notch1 mutations were less prevalent in tumors than normal epithelium. Deletion of Notch1 reduced tumor growth, an effect recapitulated by anti-NOTCH1 antibody treatment. Notch1 null tumors showed reduced proliferation. We conclude that Notch1 mutations in normal epithelium are beneficial as wild-type Notch1 favors tumor expansion. NOTCH1 blockade may have therapeutic potential in preventing esophageal squamous cancer.


Assuntos
Neoplasias Esofágicas , Animais , Humanos , Camundongos , Pessoa de Meia-Idade , Carcinogênese/patologia , Epitélio/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Mutação , Receptor Notch1/genética
4.
Dig Dis Sci ; 67(10): 4620-4632, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908123

RESUMO

Although imaging glucose metabolism with positron emission tomography combined with X-ray CT (FDG-PET/CT) has become a standard diagnostic modality for the discovery and surveillance of malignant tumors and inflammatory processes, its origins extend back to more than a century of notable discoveries in the fields of inorganic and organic chemistry, nuclear physics, mathematics, biochemistry, solute transport physiology, metabolism, and imaging, accomplished by pioneering and driven investigators, of whom at least ten were recipients of the Nobel Prize. These tangled and diverse roots eventually coalesced into the FDG-PET/CT method, that through its many favorable characteristics inherent in the isotope used (18F), the accurate imaging derived from coincidence detection of positron annihilation radiation combined with computed tomography, and the metabolic trapping of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) in tissues, provides safety, sensitivity, and specificity for tumor and inflammation detection. The authors hope that this article will increase the appreciation among its readers of the insight, creativity, persistence, and drive of the many investigators who made this technique possible. This article is followed by a review of the many applications of FDG-PET/CT to the gastrointestinal tract and hepatobiliary system (Mandelkern in Dig Dis Sci 2022).


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Glucose , Humanos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X/métodos
5.
Cancer Discov ; 12(7): 1642-1655, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35397477

RESUMO

Epithelial stem cells accumulate mutations throughout life. Some of these mutants increase competitive fitness and may form clones that colonize the stem cell niche and persist to acquire further genome alterations. After a transient expansion, mutant stem cells must revert to homeostatic behavior so normal tissue architecture is maintained. Some positively selected mutants may promote cancer development, whereas others inhibit carcinogenesis. Factors that shape the mutational landscape include wild-type and mutant stem cell dynamics, competition for the niche, and environmental exposures. Understanding these processes may give new insight into the basis of cancer risk and opportunities for cancer prevention. SIGNIFICANCE: Recent advances in sequencing have found somatic mutations in all epithelial tissues studied to date. Here we review how the mutational landscape of normal epithelia is shaped by clonal competition within the stem cell niche combined with environmental exposures. Some of the selected mutant genes are oncogenic, whereas others may be inhibitory of transformation. Discoveries in this area leave many open questions, such as the definition of cancer driver genes, the mechanisms by which tissues constrain a high proportion of oncogenic mutant cells, and whether clonal fitness can be modulated to decrease cancer risk.


Assuntos
Carcinogênese , Neoplasias , Carcinogênese/genética , Células Clonais , Epitélio , Humanos , Mutação , Neoplasias/genética
6.
Sci Rep ; 12(1): 6429, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440607

RESUMO

The continuous rise in opioid overdoses in the United States is predominantly driven by very potent synthetic opioids, mostly fentanyl and its derivatives (fentanyls). Although naloxone (NLX) has been shown to effectively reverse overdoses by conventional opioids, there may be a need for higher or repeated doses of NLX to revert overdoses from highly potent fentanyls. Here, we used positron emission tomography (PET) to assess NLX's dose-dependence on both its rate of displacement of [11C]carfentanil ([11C]CFN) binding and its duration of mu opioid receptor (MOR) occupancy in the male rat brain. We showed that clinically relevant doses of intravenously (IV) administered NLX (0.035 mg/kg, Human Equivalent Dose (HED) 0.4 mg; 0.17 mg/kg, HED 2 mg) rapidly displaced the specific binding of [11C]CFN in the thalamus in a dose-dependent manner. Brain MOR occupancy by IV NLX was greater than 90% at 5 min after NLX administration for both doses, but at 27.3 min after 0.035 mg/kg dose and at 85 min after 0.17 mg/kg NLX, only 50% occupancy remained. This indicates that the duration of NLX occupancy at MORs is short-lived. Overall, these results show that clinically relevant doses of IV NLX can promptly displace fentanyls at brain MORs, but repeated or higher NLX doses may be required to prevent re-narcotization following overdoses with long-acting fentanyls.


Assuntos
Analgésicos Opioides , Overdose de Drogas , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Overdose de Drogas/metabolismo , Fentanila/análogos & derivados , Masculino , Naloxona , Ratos , Receptores Opioides mu/metabolismo , Tomografia Computadorizada por Raios X
7.
ACS Chem Neurosci ; 12(18): 3410-3417, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469110

RESUMO

Adenosine receptor (AR) radiotracers for positron emission tomography (PET) have provided knowledge on the in vivo biodistribution of ARs in the central nervous system (CNS), which is of therapeutic interest for various neuropsychiatric disorders. Additionally, radioligands that can image changes in endogenous adenosine levels in different physiological and pathological conditions are still lacking. The binding of known antagonist adenosine A1 receptor (A1R) radiotracer, [11C]MDPX, failed to be inhibited by elevated endogenous adenosine in a rodent PET study. Since most of the known AR PET radiotracers were antagonists, we propose that an A1R agonist radioligand may possess higher sensitivity to measure changes in endogenous adenosine concentration. Herein, we report our latest findings toward the development of a full agonist adenosine A1 radioligand for PET. Based on a 3,5-dicyanopyridine template, 16 new derivatives were designed and synthesized to optimize both binding affinity and functional activity, resulting in two full agonists (compounds 27 and 29) with single-digit nanomolar affinities and good subtype selectivity (A1/A2A selectivity of ∼1000-fold for compound 27 and 29-fold for compound 29). Rapid O-[11C]methylation provided [11C]27 and [11C]29 in high radiochemical yields and radiochemical purity. However, subsequent brain PET imaging in rodents showed poor brain permeability for both radioligands. An in vivo PET study using knockout mice for MDR 1a/a, BCRP, and MRP1 indicated that these compounds might be substrates for brain efflux pumps. In addition, in silico evaluation using multiparameter optimization identified high molecular weight and high polar surface area as the main molecular descriptors responsible for low brain penetration. These results will provide further insight toward development of full agonist adenosine A1 radioligands and also highly potent CNS A1AR drugs.


Assuntos
Proteínas de Neoplasias , Agonistas do Receptor Purinérgico P1 , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Adenosina , Animais , Camundongos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
8.
Cancer Discov ; 11(2): 340-361, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33087317

RESUMO

Skin cancer risk varies substantially across the body, yet how this relates to the mutations found in normal skin is unknown. Here we mapped mutant clones in skin from high- and low-risk sites. The density of mutations varied by location. The prevalence of NOTCH1 and FAT1 mutations in forearm, trunk, and leg skin was similar to that in keratinocyte cancers. Most mutations were caused by ultraviolet light, but mutational signature analysis suggested differences in DNA-repair processes between sites. Eleven mutant genes were under positive selection, with TP53 preferentially selected in the head and FAT1 in the leg. Fine-scale mapping revealed 10% of clones had copy-number alterations. Analysis of hair follicles showed mutations in the upper follicle resembled adjacent skin, but the lower follicle was sparsely mutated. Normal skin is a dense patchwork of mutant clones arising from competitive selection that varies by location. SIGNIFICANCE: Mapping mutant clones across the body reveals normal skin is a dense patchwork of mutant cells. The variation in cancer risk between sites substantially exceeds that in mutant clone density. More generally, mutant genes cannot be assigned as cancer drivers until their prevalence in normal tissue is known.See related commentary by De Dominici and DeGregori, p. 227.This article is highlighted in the In This Issue feature, p. 211.


Assuntos
Carcinoma Basocelular/genética , Carcinoma de Células Escamosas/genética , Neoplasias Cutâneas/genética , Adulto , Idoso , Caderinas/genética , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/patologia , Células Clonais , Feminino , Antebraço , Humanos , Perna (Membro) , Masculino , Pessoa de Meia-Idade , Mutação , Receptor Notch1/genética , Neoplasias Cutâneas/patologia , Tórax
10.
Front Neurosci ; 14: 565668, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192252

RESUMO

The enzyme aromatase catalyzes the final step in estrogen biosynthesis, converting testosterone to estradiol, and is expressed in the brain of all mammals. Estrogens are thought to be important for maintenance of cognitive function in women, whereas testosterone is thought to modulate cognitive abilities in men. Here, we compare differences in cognitive performance in relation to brain aromatase availability in healthy men and women. Twenty-seven healthy participants were administered tests of verbal learning and memory and perceptual/abstract reasoning. In vivo images of brain aromatase availability were acquired in this sample using positron emission tomography (PET) with the validated aromatase radiotracer [11C]vorozole. Regions of interest were placed bilaterally on the amygdala and thalamus where aromatase availability is highest in the human brain. Though cognitive performance and aromatase availability did not differ as a function of sex, higher availability of aromatase in the amygdala was associated with lower cognitive performance in men. No such relationship was found in women; and the corresponding regression slopes were significantly different between the sexes. Thalamic aromatase availability was not significantly correlated with cognitive performance in either sex. These findings suggest that the effects of brain aromatase on cognitive performance are both region- and sex-specific and may explain some of the normal variance seen in verbal and nonverbal cognitive abilities in men and women as well as sex differences in the trajectory of cognitive decline associated with Alzheimer's disease.

11.
Proc Natl Acad Sci U S A ; 117(37): 22962-22966, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868418

RESUMO

Gonadal hormones are linked to mechanisms that govern appetitive behavior and its suppression. Estrogens are synthesized from androgens by the enzyme aromatase, highly expressed in the ovaries of reproductive-aged women and in the brains of men and women of all ages. We measured aromatase availability in the amygdala using positron emission tomography (PET) with the aromatase inhibitor [11C]vorozole in a sample of 43 adult, normal-weight, overweight, or obese men and women. A subsample of 27 also completed personality measures to examine the relationship between aromatase and personality traits related to self-regulation and inhibitory control. Results indicated that aromatase availability in the amygdala was negatively associated with body mass index (BMI) (in kilograms per square meter) and positively correlated with scores of the personality trait constraint independent of sex or age. Individual variations in the brain's capacity to synthesize estrogen may influence the risk of obesity and self-control in men and women.


Assuntos
Apetite/fisiologia , Estrogênios/metabolismo , Obesidade/metabolismo , Adulto , Idoso , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/metabolismo , Androgênios , Aromatase/análise , Inibidores da Aromatase , Índice de Massa Corporal , Encéfalo/metabolismo , Estrogênios/fisiologia , Feminino , Humanos , Lipogênese , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Autocontrole
12.
Nat Genet ; 52(6): 604-614, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424351

RESUMO

During aging, progenitor cells acquire mutations, which may generate clones that colonize the surrounding tissue. By middle age, normal human tissues, including the esophageal epithelium (EE), become a patchwork of mutant clones. Despite their relevance for understanding aging and cancer, the processes that underpin mutational selection in normal tissues remain poorly understood. Here, we investigated this issue in the esophageal epithelium of mutagen-treated mice. Deep sequencing identified numerous mutant clones with multiple genes under positive selection, including Notch1, Notch2 and Trp53, which are also selected in human esophageal epithelium. Transgenic lineage tracing revealed strong clonal competition that evolved over time. Clone dynamics were consistent with a simple model in which the proliferative advantage conferred by positively selected mutations depends on the nature of the neighboring cells. When clones with similar competitive fitness collide, mutant cell fate reverts towards homeostasis, a constraint that explains how selection operates in normal-appearing epithelium.


Assuntos
Esôfago/citologia , Mutação , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Animais , Linhagem da Célula , Dietilnitrosamina/toxicidade , Epitélio/efeitos dos fármacos , Epitélio/patologia , Epitélio/fisiologia , Esôfago/fisiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor Notch1/genética , Receptor Notch2/genética , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/genética
13.
Int J Obes (Lond) ; 44(3): 590-600, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740725

RESUMO

OBJECTIVE: Obesity is associated with impaired inhibitory control over food intake. We hypothesized that the neural circuitry underlying inhibition of food craving would be impaired in obesity. Here we assessed whether obese men show altered brain responses during attempted cognitive inhibition of craving when exposed to food cues. METHODS: Sixteen obese men (32 ± 8.7 years old, BMI = 38.6 ± 7.2) were compared with 11 age-matched non-obese men (BMI 24.2 ± 2.5) using PET and FDG. Brain glucose metabolism was evaluated in a food deprived state: no food stimulation, food stimulation with no inhibition (NI), and food stimulation with attempted inhibition (AI), each on a separate day. Individualized favorite food items were presented prior to and after FDG injection for 40 min. For AI, participants were asked to attempt to inhibit their desire for the food presented. Self-reports for hunger and food desire were recorded. RESULTS: Food stimulation compared with no stimulation increased glucose metabolism in inferior and superior frontal gyrus, default mode network and cerebellum, in both groups. For both groups, AI compared with NI-suppressed metabolism in right subgenual anterior cingulate, orbitofrontal areas, bilateral insula, and temporal gyri. There was a stimulation-by-group interaction effect in obese (but not in non-obese) men showing increased metabolism in pregenual anterior cingulate cortex (pgACC) and caudate during AI relative to NI. Changes in the food desire from NI to AI correlated negatively with changes in metabolism in pgACC/caudate in obese but not in non-obese men. CONCLUSIONS: Obese men showed higher activation in pgACC/caudate, which are regions involved with self-regulation and emotion/reward during AI. Behavioral associations suggest that successful AI is an active process requiring more energy in obese but not in non-obese men. The additional required effort to increase cognitive control in response to food stimulation in obese compared with non-obese men may contribute to their uncontrolled eating behavior.


Assuntos
Encéfalo/metabolismo , Encéfalo/fisiopatologia , Fissura/fisiologia , Comportamento Alimentar/fisiologia , Obesidade/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Adulto Jovem
15.
Transl Psychiatry ; 9(1): 93, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770780

RESUMO

The response to drugs of abuse is affected by expectation, which is modulated in part by dopamine (DA), which encodes for a reward prediction error. Here we assessed the effect of expectation on methylphenidate (MP)-induced striatal DA changes in 23 participants with an active cocaine use disorder (CUD) and 23 healthy controls (HC) using [11C]raclopride and PET both after placebo (PL) and after MP (0.5 mg/kg, i.v.). Brain dopamine D2 and D3 receptor availability (D2R: non-displaceable binding potential (BPND)) was measured under four conditions in randomized order: (1) expecting PL/receiving PL, (2) expecting PL/receiving MP, (3) expecting MP/receiving PL, and (4) expecting MP/receiving MP. Expecting MP increased pulse rate compared to expecting PL. Receiving MP decreased D2R in striatum compared to PL, indicating MP-induced striatal DA release, and this effect was significantly blunted in CUD versus HC consistent with prior findings of decreased striatal dopamine responses both in active and detoxified CUD. There was a group × challenge × expectation effect in caudate and midbrain, with expectation of MP increasing MP-induced DA release in HC but not in CUD, and expectation of PL showing a trend to increase MP-induced DA release in CUD but not in HC. These results are consistent with the role of DA in reward prediction error in the human brain: decreasing DA signaling when rewards are less than expected (blunted DA increases to MP in CUD) and increasing them when greater than expected (for PL in CUD reflecting conditioned responses to injection). Our findings also document disruption of the expectation of drug effects in dopamine signaling in participants with CUD compared to non-addicted individuals.


Assuntos
Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/uso terapêutico , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Dopamina/metabolismo , Metilfenidato/uso terapêutico , Recompensa , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Estudos de Casos e Controles , Estimulantes do Sistema Nervoso Central/farmacocinética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/patologia , Feminino , Humanos , Masculino , Metilfenidato/farmacocinética , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Racloprida/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo
16.
Science ; 362(6417): 911-917, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30337457

RESUMO

The extent to which cells in normal tissues accumulate mutations throughout life is poorly understood. Some mutant cells expand into clones that can be detected by genome sequencing. We mapped mutant clones in normal esophageal epithelium from nine donors (age range, 20 to 75 years). Somatic mutations accumulated with age and were caused mainly by intrinsic mutational processes. We found strong positive selection of clones carrying mutations in 14 cancer genes, with tens to hundreds of clones per square centimeter. In middle-aged and elderly donors, clones with cancer-associated mutations covered much of the epithelium, with NOTCH1 and TP53 mutations affecting 12 to 80% and 2 to 37% of cells, respectively. Unexpectedly, the prevalence of NOTCH1 mutations in normal esophagus was several times higher than in esophageal cancers. These findings have implications for our understanding of cancer and aging.


Assuntos
Envelhecimento/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Esôfago/patologia , Seleção Genética , Adulto , Idoso , Células Clonais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Receptor Notch1/genética , Proteína Supressora de Tumor p53/genética , Adulto Jovem
17.
J Med Chem ; 61(22): 9966-9975, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30359014

RESUMO

Central adenosine A1 receptor (A1R) is implicated in pain, sleep, substance use disorders, and neurodegenerative diseases, and is an important target for pharmaceutical development. Radiotracers for A1R positron emission tomography (PET) would enable measurement of the dynamic interaction of endogenous adenosine and A1R during the sleep-awake cycle. Although several human A1R PET tracers have been developed, most are xanthine-based antagonists that failed to demonstrate competitive binding against endogenous adenosine. Herein, we explored non-nucleoside (3,5-dicyanopyridine and 5-cyanopyrimidine) templates for developing an agonist A1R PET radiotracer. We synthesized novel analogues, including 2-amino-4-(3-methoxyphenyl)-6-(2-(6-methylpyridin-2-yl)ethyl)pyridine-3,5-dicarbonitrile (MMPD, 22b), a partial A1R agonist of sub-nanomolar affinity. [11C]22b showed suitable blood-brain barrier (BBB) permeability and test-retest reproducibility. Regional brain uptake of [11C]22b was consistent with known brain A1R distribution and was blocked significantly by A1R but not A2AR ligands. [11C]22b is the first BBB-permeable A1R partial agonist PET radiotracer with the promise of detecting endogenous adenosine fluctuations.


Assuntos
Agonistas do Receptor A1 de Adenosina/metabolismo , Tomografia por Emissão de Pósitrons , Receptor A1 de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/química , Barreira Hematoencefálica/metabolismo , Células HEK293 , Humanos , Ligantes , Relação Estrutura-Atividade
18.
Chemistry ; 24(26): 6848-6853, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29504637

RESUMO

The development of a convenient and rapid method to synthesize radiolabeled, enantiomerically pure amino acids (AAs) as potential positron emission tomography (PET) imaging agents for mapping various biochemical transformations in living organisms remains a challenge. This is especially true for the synthesis of carbon-11-labeled AAs given the short half-life of carbon-11 (11 C, t1/2 =20.4 min). A facile synthetic pathway to prepare enantiomerically pure 11 C-labeled l-asparagine was developed using a partially protected serine as a starting material with a four-step transformation providing a chiral five-membered cyclic sulfamidate as the radiolabeling precursor. Its structure and absolute configuration were confirmed by X-ray crystallography. Utilizing a [11 C]cyanide nucleophilic ring opening reaction followed by selective acidic hydrolysis and deprotection, enantiomerically pure l-[4-11 C]asparagine was synthesized. Further optimization of reaction parameters, including base, metal ion source, solvent, acid component, reaction temperature and reaction time, a reliable two-step method for synthesizing l-[4-11 C]asparagine was presented: within a 45±3 min (n=5, from end-of-bombardment), the desired enantiomerically pure product was synthesized with the initial nucleophilic cyanation yield of 69±4 % (n=5) and overall two-step radiochemical yield of 53±2 % (n=5) based on starting [11 C]HCN, and with radiochemical purity of 96±2 % (n=5).


Assuntos
Asparagina/química , Compostos Radiofarmacêuticos/química , Ácidos Sulfônicos/química , Asparagina/síntese química , Radioisótopos de Carbono/química , Cristalografia por Raios X , Conformação Molecular , Nitrilas/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Estereoisomerismo
19.
J Neurosci ; 37(19): 4982-4991, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28416594

RESUMO

The role of the protein kinase Akt1 in dopamine neurotransmission is well recognized and has been implicated in schizophrenia and psychosis. However, the extent to which variants in the AKT1 gene influence dopamine neurotransmission is not well understood. Here we investigated the effect of a newly characterized variant number tandem repeat (VNTR) polymorphism in AKT1 [major alleles: L- (eight repeats) and H- (nine repeats)] on striatal dopamine D2/D3 receptor (DRD2) availability and on dopamine release in healthy volunteers. We used PET and [11C]raclopride to assess baseline DRD2 availability in 91 participants. In 54 of these participants, we also measured intravenous methylphenidate-induced dopamine release to measure dopamine release. Dopamine release was quantified as the difference in specific binding of [11C]raclopride (nondisplaceable binding potential) between baseline values and values following methylphenidate injection. There was an effect of AKT1 genotype on DRD2 availability at baseline for the caudate (F(2,90) = 8.2, p = 0.001) and putamen (F(2,90) = 6.6, p = 0.002), but not the ventral striatum (p = 0.3). For the caudate and putamen, LL showed higher DRD2 availability than HH; HL were in between. There was also a significant effect of AKT1 genotype on dopamine increases in the ventral striatum (F(2,53) = 5.3, p = 0.009), with increases being stronger in HH > HL > LL. However, no dopamine increases were observed in the caudate (p = 0.1) or putamen (p = 0.8) following methylphenidate injection. Our results provide evidence that the AKT1 gene modulates both striatal DRD2 availability and dopamine release in the human brain, which could account for its association with schizophrenia and psychosis. The clinical relevance of the newly characterized AKT1 VNTR merits investigation.SIGNIFICANCE STATEMENT The AKT1 gene has been implicated in schizophrenia and psychosis. This association is likely to reflect modulation of dopamine signaling by Akt1 kinase since striatal dopamine hyperstimulation is associated with psychosis and schizophrenia. Here, using PET with [11C]raclopride, we identified in the AKT1 gene a new variable number tandem repeat (VNTR) marker associated with baseline striatal dopamine D2/D3 receptor availability and with methylphenidate-induced striatal dopamine increases in healthy volunteers. Our results confirm the involvement of the AKT1 gene in modulating striatal dopamine signaling in the human brain. Future studies are needed to assess the association of this new VNTR AKT1 variant in schizophrenia and drug-induced psychoses.


Assuntos
Corpo Estriado/metabolismo , Dopamina/biossíntese , Neurotransmissores/biossíntese , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores Dopaminérgicos/metabolismo , Adulto , Disponibilidade Biológica , Feminino , Humanos , Masculino , Valores de Referência , Transmissão Sináptica/fisiologia
20.
Appl Radiat Isot ; 118: 62-66, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27611082

RESUMO

A rapid, mild radiosynthesis of freebase [11C]nicotine was developed by the methylation of freebase nornicotine with [11C]methyl triflate in acetone (5min, 45°C). A basic (pH 10.5-11.0) HPLC system reproducibly yielded freebase [11C]nicotine as a well-defined single peak. The freebase [11C]nicotine was concentrated by solid phase extraction and formulated in 50µL ethanol (370MBq/50µL) without evaporative loss suitable for a cigarette spiking study. A radiochemical yield of 60.4±4.7% (n=3), radiochemical purity ≥99.9% and specific activity of 648GBq/µmol at EOB for 5min beams were achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...